



---

# **GCE AS MARKING SCHEME**

---

**SUMMER 2023**

**AS  
MATHEMATICS  
UNIT 1 PURE MATHEMATICS A  
2300U10-1**

## INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

**GCE AS MATHEMATICS**  
**UNIT 1 PURE MATHEMATICS A**  
**SUMMER 2023 MARK SCHEME**

**Q      Solution****Mark Notes**

1(a)  $1 + {}^9C_1(-3x)^1 + {}^9C_2(-3x)^2$  B1  ${}^9C_1(-3x)^1$

B1  ${}^9C_2(\pm 3x)^2$ , oe

$1 - 27x + 324x^2$  B1 cao Ignore extra terms

1(b) Put  $x = 0.001$

M1 sub  $x = 0.001$  into either side. si

$(1 - 3 \times 0.001)^9$

$= 1 - 27(0.001) + 324(0.001)^2$  A1 correct sub, ft their (a), for equivalent difficulty

$(0.997)^9 = 1 - 0.027 + 0.000324$

$(0.997)^9 = 0.973(324)$

$(0.997)^9 = 0.973$  to 3dp

A1 cao for their expression in (a), provided  $0 < \text{answer} < 1$   
3dp required

| Q | Solution                                               | Mark Notes                             |
|---|--------------------------------------------------------|----------------------------------------|
| 2 | $3\sin^2 \theta - 5\cos^2 \theta = 2\cos \theta$       |                                        |
|   | $3(1 - \cos^2 \theta) - 5\cos^2 \theta = 2\cos \theta$ | M1 $\sin^2 \theta + \cos^2 \theta = 1$ |
|   | $8\cos^2 \theta + 2\cos \theta - 3 = 0$                |                                        |
|   | $(2\cos \theta - 1)(4\cos \theta + 3) = 0$             | m1 factorisation, oe                   |
|   |                                                        | $ax^2 + bx + c = (dx + e)(fx + g)$     |
|   |                                                        | $df = a$ and $eg = c$                  |
|   | $\cos \theta = \frac{1}{2}, -\frac{3}{4}$              | A1                                     |
|   | $\cos \theta = \frac{1}{2}$                            |                                        |
|   | $\theta = 60^\circ$                                    | B1 ft                                  |
|   | $\theta = 300^\circ$                                   | B1 ft                                  |
|   | $\cos \theta = -\frac{3}{4}$                           |                                        |
|   | $\theta = 138.59^\circ$                                | B1 ft, Accept $139^\circ$              |
|   | $\theta = 221.41^\circ$                                | B1 ft, Accept $221^\circ$              |

### Notes

Mark each branch separately.

FT 2 branches only if different signs.

For each branch, -1 for a 3<sup>rd</sup> root in the range  $0^\circ < \theta < 360^\circ$ ,

-1 for a 4<sup>th</sup> root in the range  $0^\circ < \theta < 360^\circ$ .

Ignore roots outside the range  $0^\circ < \theta < 360^\circ$ .

| <b>Q</b> | <b>Solution</b>                                                    | <b>Mark Notes</b>                                                          |
|----------|--------------------------------------------------------------------|----------------------------------------------------------------------------|
| 3(a)     | Gradient of $AB = \frac{8-5}{3-(-2)} \left( = \frac{3}{5} \right)$ | B1                                                                         |
|          | Correct method for finding the equ $AB$                            | M1                                                                         |
|          | Equation of $AB$ is $y - 5 = \frac{3}{5}(x - (-2))$                | A1 or $y - 8 = \frac{3}{5}(x - 3)$<br>ft grad $AB$ , any correct form. ISW |
|          | $5y = 3x + 31$                                                     |                                                                            |
| 3(b)     | Gradient $AC = -\frac{5}{3}$                                       | M1 $-1/\text{grad } AB$ , ft their grad $AB$                               |
|          | Equation of $AC$ is $y - 5 = -\frac{5}{3}(x - (-2))$               | m1 correct method                                                          |
|          | $3y + 5x = 5$                                                      |                                                                            |
|          | At $C$ , $y = 0$ , $5x = 5$ , $x = 1$                              |                                                                            |
|          | $C$ has coordinates $(1, 0)$                                       | A1 Convincing                                                              |

OR

Assuming that  $C$  is  $(1, 0)$

$$\text{Gradient } AC = \frac{5-0}{-2-1} = -\frac{5}{3} \quad (\text{M1})$$

$$\text{Grad } AC \times \text{Grad } AB = -\frac{5}{3} \times \frac{3}{5} = -1 \quad (\text{m1})$$

Hence  $AC$  and  $AB$  are perpendicular (A1)

OR

$$\text{Gradient } AC = -\frac{5}{3} \quad (\text{M1}) \quad -1/\text{grad } AB$$

$C$  has coordinates  $(p, 0)$

$$\frac{5-0}{-2-p} = -\frac{5}{3} \quad (\text{m1})$$

$$15 = 10 + 5p, p = 1 \quad (\text{A1})$$

| <b>Q</b> | <b>Solution</b>                                                            | <b>Mark Notes</b>               |
|----------|----------------------------------------------------------------------------|---------------------------------|
| 3(c)     | $AB = \sqrt{(8 - 5)^2 + (3 + 2)^2} = \sqrt{34}$                            | M1 correct method for distance  |
|          | $AC = \sqrt{(0 - 5)^2 + (1 + 2)^2} = \sqrt{34}$                            | A1 one correct distance         |
|          | $\text{Area of } ABC = \frac{1}{2} \times AB \times AC$                    | M1 correct method for area used |
|          | $\text{Area of } ABC = \frac{1}{2} \times \sqrt{34} \times \sqrt{34} = 17$ | A1 cao                          |

OR

Area  $ABC$

$$\begin{aligned}
 &= \frac{1}{2}(5 + 8) \times (3 - (-2)) - \frac{1}{2} \times 3 \times 5 - \frac{1}{2} \times 8 \times 2 && \text{(M1)} \\
 &&& \text{(M1) correct area identified} \\
 &&& \text{(A1) correct expression} \\
 &= \frac{65}{2} - \frac{15}{2} - 8 \\
 &= 17 && \text{(A1) cao}
 \end{aligned}$$

OR

Triangle  $ABC$  is isosceles with  $AC = AB$  and base  $= BC$ .

$$\text{Midpoint of base} = (2, 4) \quad \text{(M1)}$$

$$\begin{aligned}
 \text{Length of base}(BC) &= \sqrt{(3 - 1)^2 + (8 - 0)^2} \\
 &= 2\sqrt{17}
 \end{aligned}$$

$$\text{Height} = \sqrt{(2 - -2)^2 + (4 - 5)^2} = \sqrt{17} \quad \text{(A1) One correct length}$$

$$\begin{aligned}
 \text{Area of } ABC &= \frac{1}{2} \times \text{base} \times \text{height} && \text{(M1) correct method for area used} \\
 \text{Area of } ABC &= \frac{1}{2} \times 2\sqrt{17} \times \sqrt{17} \\
 &= 17 && \text{(A1) cao}
 \end{aligned}$$

| <b>Q</b> | <b>Solution</b>                                               | <b>Mark Notes</b>                           |
|----------|---------------------------------------------------------------|---------------------------------------------|
| 3(d)     | $BC$ is diameter of required circle                           | M1 si                                       |
|          | Method to find the centre                                     | M1                                          |
|          | $\text{Centre} = \left( \frac{3+1}{2}, \frac{8+0}{2} \right)$ |                                             |
|          | $\text{Centre} = (2, 4)$                                      |                                             |
|          | Method to find the radius                                     | M1 from same diameter                       |
|          | $\text{Radius} = \frac{1}{2} \sqrt{8^2 + 2^2}$                | $\sqrt{4^2 + 1^2}$ , or radius <sup>2</sup> |
|          | $\text{Radius} = \sqrt{17}$                                   |                                             |
|          | Method for the equation of a circle                           | m1 Dependent on all previous 3 M1s          |
|          | $(x - 2)^2 + (y - 4)^2 = 17$                                  | A1 oe, cao, ISW                             |

OR

|                                                          |                                        |
|----------------------------------------------------------|----------------------------------------|
| Equation of circle is $x^2 + y^2 + ax + by + c = 0$ (M1) | used, or $(x - p)^2 + (y - q)^2 = r^2$ |
| For $C(1, 0)$ , $a + c = -1$                             | (A1) one correct equation              |
| For $A(-2, 5)$ , $-2a + 5b + c = -4 - 25$                |                                        |
| For $B(3, 8)$ , $3a + 8b + c = -9 - 64$                  | (A1) 3 correct equations               |
| Correct method for solving equations                     | (M1)                                   |
| $a = -4, b = -8, c = 3$                                  | (A1) cao                               |
| $x^2 + y^2 - 4x - 8y + 3 = 0$                            |                                        |

**Q      Solution**      **Mark Notes**

|         |                                             |    |                      |
|---------|---------------------------------------------|----|----------------------|
| 4(a)    | Attempt at long division                    | M1 | oe, si               |
|         | $3x^2 + 11x (+ 34)$                         | A1 | implied by 101       |
|         | Remainder = 101                             | A1 | cao                  |
| 4(b)(i) | Attempt to use $f(-2) = 0$ .                | M1 |                      |
|         | $f(-2) = 2(-2)^3 - 3(-2)^2 + a(-2) + 6 = 0$ | A1 | correct equation, si |
|         | $a = -11$                                   | A1 |                      |

| Q        | Solution                        | Mark Notes                                        |
|----------|---------------------------------|---------------------------------------------------|
| 4(b)(ii) | $f(x) = (x + 2)(2x^2 + px + q)$ | M1 at least one of $p, q$ correct, ft if poss. oe |
|          | $f(x) = (x + 2)(2x^2 - 7x + 3)$ | A1                                                |
|          | $f(x) = (x + 2)(2x - 1)(x - 3)$ |                                                   |
|          | $x = -2$                        |                                                   |
|          | $x = \frac{1}{2}$               | A1 or $x = 3$                                     |
|          | $x = 3$                         | A1 all three roots                                |

OR

|                                         |      |
|-----------------------------------------|------|
| Use of factor theorem where $x \neq -2$ | (M1) |
| 1 <sup>st</sup> correct root $\neq -2$  | (A1) |
| 2 <sup>nd</sup> correct root $\neq -2$  | (A1) |
| All three roots                         | (A1) |

OR for (b)(i) and (b)(ii)

|                                                 |                                                    |
|-------------------------------------------------|----------------------------------------------------|
| $2x^3 - 3x^2 + ax + 6 = (x + 2)(2x^2 + px + q)$ | (M1)                                               |
| Comparing coefficients                          | (M1)                                               |
| For $x^2$ : $-3 = 4 + p$ ; $p = -7$             | (A1)                                               |
| constant term $6 = 2q$ ; $q = 3$                | (A1)                                               |
| $f(x) = (x + 2)(2x^2 - 7x + 3)$                 | $(x - 3)(2x^2 + 3x - 2)$ , $(2x - 1)(x^2 - x - 6)$ |
| $f(x) = 2x^3 - 3x^2 - 11x + 6$                  |                                                    |
| $a = -11$                                       | (A1)                                               |
| $f(x) = (x + 2)(2x - 1)(x - 3)$                 | (A1)                                               |
| $x = -2, \frac{1}{2}, 3$                        | (A1)                                               |

**Q      Solution****Mark Notes**

$$5 \quad \frac{\sqrt[3]{512a^2} - \frac{\frac{7}{6} \times a^{-\frac{1}{3}}}{a^{\frac{1}{6}}}}{a^{\frac{1}{6}}}$$

$$\sqrt[3]{512a^2} = 8a^{\frac{2}{3}}$$

B1      oe

$$\frac{\frac{7}{6} \times a^{-\frac{1}{3}}}{a^{\frac{1}{6}}} = a^{\left(\frac{7}{6} - \frac{1}{3} - \frac{1}{6}\right)}$$

B1      some correct simplification of indices

$$= a^{\frac{2}{3}}$$

B1      2<sup>nd</sup> term correct, oe

$$\sqrt[3]{512a^2} - \frac{\frac{7}{6} \times a^{-\frac{1}{3}}}{a^{\frac{1}{6}}} = 8a^{\frac{2}{3}} - a^{\frac{2}{3}}$$

$$= 7a^{\frac{2}{3}} \quad \text{or} \quad 7\sqrt[3]{a^2}$$

B1      cao

| Q | Solution | Mark Notes |
|---|----------|------------|
|---|----------|------------|

6 Cosine rule used correctly M1

$$AC^2 = AB^2 + BC^2 - 2(AB)(BC)\cos B$$

$$(4 + \sqrt{3})^2 = (3)^2 + (2\sqrt{5})^2 - 2(3)(2\sqrt{5})\cos B \quad \text{A1} \quad \text{All correct}$$

$$19 + 8\sqrt{3} = 9 + 20 - 12\sqrt{5} \cos B \quad \text{B1} \quad 16 + 8\sqrt{3} + 3$$

$$\text{B1} \quad 9 \text{ and } 20$$

$$\text{B1} \quad 12\sqrt{5}$$

$$12\sqrt{5} \cos B = 10 - 8\sqrt{3}$$

$$\cos B = \frac{10 - 8\sqrt{3}}{12\sqrt{5}}$$

$$\cos B = \frac{5 - 4\sqrt{3}}{6\sqrt{5}} \quad \text{A1} \quad a = 5$$

$$\text{A1} \quad b = 4$$

If A0A0, award A1 for  $\cos B = \frac{10 - 8\sqrt{3}}{12\sqrt{5}}$  or

$$\cos B = \frac{-10 + 8\sqrt{3}}{-12\sqrt{5}}$$

ISW

|          |                 |                   |
|----------|-----------------|-------------------|
| <b>Q</b> | <b>Solution</b> | <b>Mark Notes</b> |
|----------|-----------------|-------------------|

|                                                  |                                        |
|--------------------------------------------------|----------------------------------------|
| 7(a)(i) $2x^2 + 5x - 12 = mx - 14$               | M1                                     |
| $2x^2 + (5 - m)x + 2 = 0$                        | A1      Allow $2x^2 + 5x - mx + 2 = 0$ |
| Discriminant = $(5 - m)^2 - 4 \times 2 \times 2$ | m1      si                             |
| For tangent discriminant = 0                     | m1      used                           |
| $25 - 10m + m^2 - 16 = 0$                        |                                        |
| $m^2 - 10m + 9 = 0$                              | A1      convincing                     |

|                                                         |                                      |
|---------------------------------------------------------|--------------------------------------|
| 7(a)(ii) $(m - 1)(m - 9) = 0$                           | oe $(5 - m) = \pm 4$                 |
| $m = 1, 9$                                              | B1B1                                 |
| When $m = 1$                                            | when $m = 9$                         |
| $2x^2 + 5x - 12 = x - 14$ or $2x^2 + 5x - 12 = 9x - 14$ | B1                                   |
| $2x^2 + 4x + 2 = 0$ or $2x^2 - 4x + 2 = 0$              |                                      |
| $(x + 1)^2 = 0$ or $(x - 1)^2 = 0$                      | B1      si                           |
| $x = -1$ and $x = 1$                                    | B1      or $(-1, -15)$ or $(1, -5)$  |
| $y = -15$ and $y = -5$                                  |                                      |
| Points are $(-1, -15)$ and $(1, -5)$                    | B1      2 <sup>nd</sup> correct pair |

OR for final 4 B1 marks

|                                                    |                                        |
|----------------------------------------------------|----------------------------------------|
| $m = 1, \frac{dy}{dx} = 4x + 5 = 1 \quad (x = -1)$ | (B1)                                   |
| $m = 9, \frac{dy}{dx} = 4x + 5 = 9 \quad (x = 1)$  | (B1)                                   |
| $x = -1$ and $x = 1$                               | (B1)      or $(-1, -15)$ or $(1, -5)$  |
| $y = -15$ and $y = -5$                             |                                        |
| Points are $(-1, -15)$ and $(1, -5)$               | (B1)      2 <sup>nd</sup> correct pair |

**Q      Solution****Mark Notes**Alternative solution for Q7 (using the gradient function)

7(a)(i) At point of intersection

$$2x^2 + 5x - 12 = mx - 14 \quad (\text{M1})$$

$$\text{Gradient of curve} = \frac{dy}{dx} = 4x + 5 \quad (\text{m1})$$

$$\text{When line is tangent, } 4x + 5 = m \quad (\text{A1})$$

$$x = \frac{m-5}{4}$$

$$2\left(\frac{m-5}{4}\right)^2 + 5\left(\frac{m-5}{4}\right) - 12 = m\left(\frac{m-5}{4}\right) - 14 \quad (\text{A1})$$

$$m^2 - 10m + 9 = 0 \quad (\text{A1}) \quad \text{convincing}$$

7(a)(ii)  $2x^2 + 5x - 12 = mx - 14 \quad (\text{M1})$

$$\text{At point of contact, } m = 4x + 5 \quad (\text{A1})$$

$$2x^2 + 5x - 12 = (4x + 5)x - 14 \quad (\text{m1})$$

$$2x^2 - 2 = 0$$

$$(x + 1)(x - 1) = 0 \quad (\text{m1}) \quad \text{or } x^2 = 1$$

$$x = -1, 1 \quad (\text{A1}) \quad \text{one correct pair}$$

$$y = -15, -5 \quad (\text{A1}) \quad \text{all correct}$$

7(b) For 2 distinct points of intersection

$$\text{Discriminant} > 0 \quad \text{M1} \quad \text{used, si}$$

$$(m - 1)(m - 9) > 0 \quad \text{OR } 5 - m > 4 \text{ or } 5 - m < -4$$

$$m < 1 \text{ or } m > 9 \quad \text{A1} \quad \text{condone ',', or nothing}$$

A0 for 'and'

A0 for non-strict inequality

Mark final answer

| <b>Q</b> | <b>Solution</b>                                                                                                      | <b>Mark Notes</b>                                                                                                                                                                    |
|----------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8        | $n = 3$<br>$n^2 + 1 = 3^2 + 1 = 10$<br>10 ( $= 2 \times 5$ ) is not a prime number,<br>hence the statement is false. | M1 correct value of $n$ (e.g. 5, 7, 8)<br>A1 correct value (e.g. 26, 50, 65)<br>A1 concluding statement<br>Condone one of 'statement is false'<br>or e.g. '10 is not a prime number' |

| <b>Q</b> | <b>Solution</b> | <b>Mark Notes</b> |
|----------|-----------------|-------------------|
|----------|-----------------|-------------------|

9(a)  $y + \delta y = (x + \delta x)^2 - 3(x + \delta x)$  B1

$$y + \delta y = x^2 + 2x(\delta x) + (\delta x)^2 - 3x - 3\delta x$$

Subtract  $y = x^2 - 3x$  from  $y + \delta y$  M1

$$\delta y = 2x\delta x + (\delta x)^2 - 3\delta x$$
 A1

$$\frac{\delta y}{\delta x} = 2x + \delta x - 3$$

$$\frac{dy}{dx} = \lim_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}$$
 M1 
$$\frac{dy}{dx} = \lim_{\delta x \rightarrow 0} (2x + \delta x - 3)$$

$$\frac{dy}{dx} = 2x - 3$$
 A1 All correct

OR

$$f(x + h) = (x + h)^2 - 3(x + h)$$
 (B1)

$$f(x + h) = x^2 + 2xh + h^2 - 3x - 3h$$

$$f(x + h) - f(x) = 2xh + h^2 - 3h$$
 (M1A1)

$$\frac{f(x+h)-f(x)}{h} = 2x + h - 3$$

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$$
 (M1) 
$$f'(x) = \lim_{h \rightarrow 0} (2x + h - 3)$$

$$f'(x) = 2x - 3$$
 (A1) All correct

**Q      Solution****Mark Notes**

$$9(b)(i) f(x) = 4x^{\frac{3}{2}} + \frac{6}{\sqrt{x}}$$

$$f'(x) = 4 \times \frac{3}{2} \times x^{\frac{1}{2}} + 6 \times \left(-\frac{1}{2}\right) \times x^{-\frac{3}{2}}$$

B1 one correct term

B1 second correct term  
ISW

$$f'(x) = 6x^{\frac{1}{2}} - 3x^{-\frac{3}{2}}$$

$$9(b)(ii) f'(x) > 0$$

$$6x^{\frac{1}{2}} - 3x^{-\frac{3}{2}} > 0$$

$$\text{Multiplying by } x^{\frac{3}{2}}: 6x^2 - 3x^0 > 0$$

M1 oe eg  $3x^{\frac{1}{2}}(2 - x^{-2})$  FT similar expression  
Allow  $\leq, <, =, \geq$ 

$$x^2 > 0.5$$

A1 Allow  $\leq, <, =, \geq$ , but must be same as  
in previous M1  
FT similar expression

$$\text{For increasing function } f'(x) > 0$$

M1 used  
Allow  $f'(x) \geq 0$ 

$$x > (0.5)^{\frac{1}{2}} = 0.707106.....$$

$$k = 0.71$$

A1 cao needs 2 dp  
Condone  $x = 0.71$

**Q      Solution****Mark Notes**

10(a)  $2x + 5 = e^3$

M1      Correctly removing  $\ln$ 

$$x = \frac{1}{2}(e^3 - 5) (= 7.5427\dots)$$

A1      ISW, Accept 7.54  
Answer only, M0

10(b)  $(2x + 1)\ln 5 = \ln 14$

M1      oe  $2x\ln 5 = \ln\left(\frac{14}{5}\right)$ 

$$2x = \frac{\ln 14}{\ln 5} - 1$$

A1      isolating  $x$  term

$$x = \frac{1}{2}\left(\frac{\ln 14}{\ln 5} - 1\right) (= 0.31(98\dots))$$

A1      ISW, Accept 0.32  
Answer only, M0

OR

$$2x + 1 = \log_5 14$$

(M1)

$$2x = \log_5 14 - 1$$

(A1) isolating  $x$  term

$$x = \frac{1}{2}(\log_5 14 - 1) (= 0.31(98\dots))$$

(A1) ISW, Accept 0.32  
Answer only, M0

10(c)  $\log_7\left(\frac{8x^3 \times x}{8x^2}\right) = 4$

B1      one use power law

B1      one use addition law

B1      one use subtraction law

B1       $\log_3 81 = 4$ , si

$$\log_7 x^2 = 4, 2\log_7 x = 4$$

$$\log_7 x = 2$$

B1       $x^2 = 7^4$ 

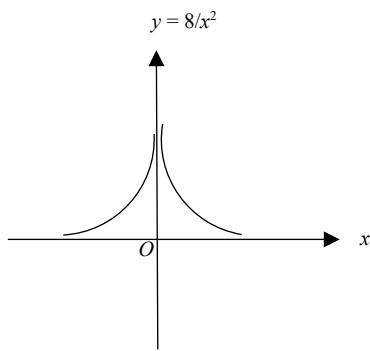
$$x = 49$$

B1      B0 for  $\pm 49$

## Q      Solution

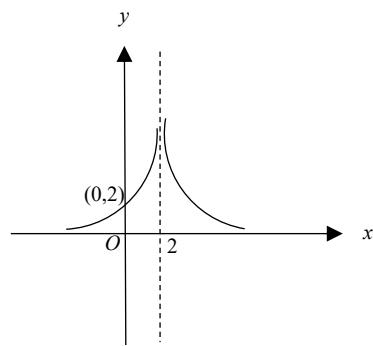
## Mark Notes

11(a)



B2      B1 each branch

11(b)

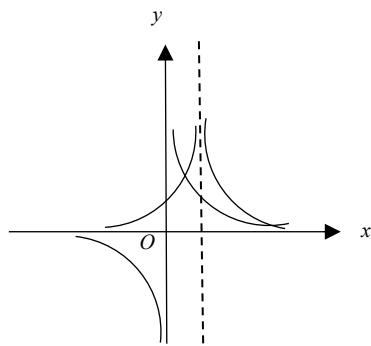


M1      ft shift entire graph to the right

B1       $(0, 2)$  caoA1       $x = 2$  as **asymptote**

**Q      Solution****Mark Notes**

11(c)



Equation has two solutions

B1      correct curve  $y = \frac{8}{x}$ , both branches.

May be seen in (b).

B1      award only if both graphs correct in first quadrant.

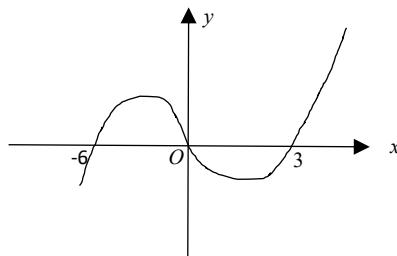
| <b>Q</b>                                                                                           | <b>Solution</b> | <b>Mark Notes</b>                                                                            |
|----------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------|
| 12(a) $\mathbf{AB} = \mathbf{b} - \mathbf{a}$                                                      |                 | M1 used                                                                                      |
| $\mathbf{AB} = 8\mathbf{i} + 4\mathbf{j}$                                                          |                 | A1 any notation ISW                                                                          |
| 12(b)(i) $ \mathbf{a}  = \sqrt{(-3)^2 + 4^2} = 5$                                                  |                 | B1 si                                                                                        |
| Unit vector = $-\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}$                                     |                 | B1 oe                                                                                        |
| 12(b)(ii) Position vector of $C$ is $7\left(-\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}\right)$ |                 | B1 oe, ft from (b)(i), provided vector is not $\mathbf{a}$ , $\mathbf{b}$ or $\mathbf{AB}$ . |
| $= \left(-\frac{21}{5}\mathbf{i} + \frac{28}{5}\mathbf{j}\right)$                                  |                 |                                                                                              |
| 12(c) $AOB = 180^\circ - \tan^{-1}\left(\frac{8}{5}\right) - \tan^{-1}\left(\frac{4}{3}\right)$    |                 | M1 oe                                                                                        |
| $AOB = 180^\circ - 57.99^\circ - 53.13^\circ$                                                      |                 | B1 any correct relevant angle, si                                                            |
| $AOB = 68.9^\circ \ (68.875\dots)$                                                                 |                 | A1                                                                                           |
| OR                                                                                                 |                 |                                                                                              |
| angle $AOB = \tan^{-1}\left(\frac{5}{8}\right) + \tan^{-1}\left(\frac{3}{4}\right)$                |                 | (M1) oe                                                                                      |
| angle $AOB = 32.01^\circ + 36.87^\circ$                                                            |                 | (B1) any correct relevant angle, si                                                          |
| angle $AOB = 68.9^\circ \ (68.875\dots)$                                                           |                 | (A1)                                                                                         |
| OR                                                                                                 |                 |                                                                                              |
| $OA = \sqrt{(-3)^2 + 4^2} = \sqrt{25}$                                                             |                 |                                                                                              |
| $OB = \sqrt{5^2 + 8^2} = \sqrt{89}$                                                                |                 |                                                                                              |
| $AB = \sqrt{8^2 + 4^2} = \sqrt{80}$                                                                |                 | (B1) all correct                                                                             |
| $80 = 25 + 89 - 2 \times 5 \times \sqrt{89} \cos\theta$                                            |                 | (M1) correct use of cosine rule with their distances                                         |
| $\cos\theta = \frac{25 + 89 - 80}{10\sqrt{89}} = 0.3603992792$                                     |                 |                                                                                              |
| angle $AOB = 68.9^\circ \ (68.875\dots)$                                                           |                 | (A1)                                                                                         |

**Q      Solution**

13(a)  $4\frac{x^{\frac{1}{3}}}{\frac{1}{3}} + \frac{5}{4}x^4 + 7x + C$

**Mark Notes**B3      B1 each term ISW  
-1 if no  $+C$ 

13(b)

Curve cuts  $x$ -axis when  $x = -6, 0, 3$ B1      maybe seen on sketch,  
may be implied by limits

$$f(x) = x^3 + 3x^2 - 18x$$

B1

$$A_1 = \int_{-6}^0 (x^3 + 3x^2 - 18x) dx$$

M1      attempt to integrate, limits not required.

$$= \left[ \frac{x^4}{4} + x^3 - 9x^2 \right]_{-6}^0$$

A1      correct integration,  
ft similar expression,  
limits not required

$$= (0) - \left( \frac{(-6)^4}{4} + (-6)^3 - 9 \times (-6)^2 \right)$$

m1      correct use of limits, either -6 and 0,  
or 0 and 3

$$= 216$$

A1      Must be from -6 to 0  
Only FT for  
 $f(x) = x^3 - 3x^2 - 18x$   
 $\left( \int_{-6}^0 f(x) dx = -216 \right)$   
or  $f(x) = x^3 + 3x^2 + 18x$   
 $\left( \int_{-6}^0 f(x) dx = -432 \right)$

**Q      Solution****Mark Notes**

13(b) (continued)

$$\begin{aligned}
 A_2 &= \left[ \frac{x^4}{4} + x^3 - 9x^2 \right]_0^3 \\
 &= \left( \frac{3^4}{4} + 3^3 - 9 \times 3^2 \right) - (0) \\
 &= -\frac{135}{4} = -33.75
 \end{aligned}$$

A1      allow (+)33.75,

Only FT for  
 $f(x) = x^3 - 3x^2 - 18x$   
 $\left( \int_0^3 f(x) dx = -87.75 \right)$   
 or  $f(x) = x^3 + 3x^2 + 18x$   
 $\left( \int_0^3 f(x) dx = 128.25 \right)$

Total area =  $216 + \frac{135}{4}$

m1      si

Total area =  $\frac{999}{4} = 249.75$

A1      cao

Note:

Must be supported by workings.

If M0, award SC1 for sight of 216 **and**  $\pm 33.75$ , **OR** SC2 for 249.75

**Q      Solution****Mark Notes**

14(a)  $y = Ae^{-kx}$  or  $y = Ae^{kx}$

B1      oe Accept numerical values for  $A \neq 0$ , and/or  $k \neq 0$ .

14(b)(i)  $Y = 5e^{-kt}$

B1      for  $A = 5$

$$1.25 = 5e^{-4k}$$

$$e^{-4k} = 0.25$$

$$k = -\frac{1}{4}\ln(0.25) = 0.3465(735903)$$

B1      Convincing, answer given  
Allow verification

14(b)(ii)  $0.6 = 5e^{-0.3466t}$

M1

$$e^{-0.3466t} = 0.12$$

$$t = \frac{\ln(0.12)}{-0.3466} (= 6.12 \text{ (hours)})$$

A1

Additional time ( $= 6.12 - 4$ ) = 2.12 (hours) A1

oe e.g. hours and minutes, ISW  
Award A1 for “their 6.12” – 4,  
provided “their 6.12” > 4